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ABSTRACT: The corona of a nanoparticle immersed in a biological fluid is of key
importance to its eventual fate and bioactivity in the environment or inside live
tissues. It is critical to have insight into both the underlying bionano interactions
and the corona composition to ensure biocompatibility of novel engineered
nanomaterials. A prediction of these properties in silico requires the successful
spanning of multiple orders of magnitude of both time and physical dimensions to
produce results in a reasonable amount of time, necessitating the development of a
multiscale modeling approach. Here, we present the NPCoronaPredict open-
source software package: a suite of software tools to enable this prediction for complex multicomponent nanomaterials in essentially
arbitrary biological fluids, or more generally any medium containing organic molecules. The package integrates several recent
physics-based computational models and a library of both physics-based and data-driven parametrizations for nanomaterials and
organic molecules. We describe the underlying theoretical background and the package functionality from the design of
multicomponent NPs through to the evaluation of the corona.

■ INTRODUCTION
Advanced materials represent a new paradigm in materials
science: substances with highly specific features and enhanced
target properties derived from precise control over their
structure and composition. A particularly relevant set of
examples of these materials are nanomaterials, which may
exhibit properties that significantly differ from the expected
behavior of the same bulk material due to the high surface-to-
volume ratio. The large surface implies high specific reactivity
and capacity for steering complex processes at the molecular
level. New materials, however, come with new risks: these
same desirable properties may also lead to unwanted behavior
when these novel materials come into contact with the
environment or living beings.1,2 As with the benefits, these
risks are high for nanomaterials, since their small size enables
rapid uptake by the body through multiple pathways, e.g.,
inhalation, ingestion, or skin contact. Consequently, it is
important to be able to predict whether a given material is
toxic or biocompatible early at the stage of the material’s
development.3 Given the vast range of materials used in
modern technology or considered as candidates for applica-
tions, and in light of the general need to reduce the amount of
in vivo and in vitro tests performed, this suggests the use of in
silico methods to predict bioactivity from first principles.4

To date, the main focus of experimental studies�and thus
the initial goal for computational methods designed to predict
experiments�for the bioactivity of nanoparticles (NP) has
been focused on the protein corona: the layer of proteins
directly and strongly bound to the surface, the hard corona, of
the NP and the soft corona of molecules adsorbed to these
inner proteins.5,6 Recently, growing attention has also been

paid to the fact that the corona need not consist only of
proteins.7 Other molecules, be they metabolites, peptide
fragments, lipids, or small organic molecules such as hormones,
medicine, or toxins will also adsorb to the NP and likewise be
transported along with it, and these may completely alter the
final destination and biological outcomes, whether this is
deliberate (as in a drug nanocarrier) or accidental. Thus, the
computational methodology relating to the corona should be
sufficiently general to account for a wide variety of
biomolecules, or indeed arbitrary organic molecules, in
addition to proteins. The relative binding affinity of these
constituents and, hence, the corona composition is controlled
by the molecular-level properties of the NP surface: the type of
atoms and their connectivity, their partial charge, polarizability,
density, and larger-scale geometrical features such as the crystal
structure and its curvature. To be able to connect these
properties to the corona composition, these must all be
factored into the computational methodology for corona
prediction. Moreover, in the context of advanced materials, the
methodology must allow for the combination of various
structural elements (core, shell, dopants, functional groups)
defined in terms of their specific properties into a composite
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NP that reflects its structural complexity and relates it to the
characteristics of the corona.
A key challenge on this path is bridging the length- and time

scale gaps between the fundamental features of the materials
and the high-level properties of interest, which can amount to
several orders of magnitude.4 On the one hand, the adsorption
of a single molecule to an NP is highly dependent on the local
atomic structure and presence of solvent, and thus this requires
the use of atomistic-level methods. The quantum and classical
atomistic methods, however, require enormous resources to
scale up to the adsorption of a single protein for the time scale
of milliseconds. On the other hand, a typical corona may
consist of hundreds of adsorbates and develops over the course
of hours. Thus, it would be prohibitively expensive to simulate
the corona for a single NP in a single medium, let alone scan
over multiple NPs or biological environments using a brute-
force atomistic simulation. To overcome this, it is necessary to
employ coarse-graining methods to allow for longer time scales
and larger systems to be reached while maintaining physical
accuracy and connection to the original material. Given the
wide range of potential adsorbates and NPs, these methods
must be sufficiently generic to cover as many possibilities as
possible while remaining accessible enough such that a novice
user can perform corona predictions without extensive training.

A key advantage is granted by the fact that the vast majority of
biomolecules, and proteins in particular, can be represented
using a relatively small number of simple repeat units such as
amino acids (AA) or sugars. It is reasonable to precalculate the
interaction for these building blocks and use these to construct
a model for the entire biomolecule, or family of related
biomolecules, thus greatly reducing the amount of effort that
must be expended to evaluate the total adsorption energy or
parametrize a new biomolecule. Likewise, although NPs can in
principle be highly complex, they too can be subdivided into
interchangeable components such as solid or hollow spheres or
cylinders of simple materials, and these can be used to
construct multicomponent NP step-by-step. This has led us to
the development of a series of increasingly complex models for
protein adsorption, starting from an initial simple model using
Lennard-Jones (LJ)-like interactions between NPs and AAs,8

to a more complex model of protein adsorption to gold9 or
titanium dioxide10 and more recently including multiple NP
components simultaneously.11 We have further developed
models for the prediction of the corona, taking advantage of
binding energies computed using the protein−NP models and
allowing for a simulation of competitive adsorption in media
with a large number of possible adsorbates.12−14

Figure 1. A summary of the overall workflow for corona prediction using the suite of computational tools discussed here. Yellow parallelograms
indicate data used as input/output with the expected file format indicated in brackets. Blue rectangles indicate software or methodologies used to
generate or process input, with entries in italics indicating external methodologies not included in either NPCoronaPredict or PMFPredictor. A
large set of precomputed Hamaker constants and Bead-surface PMFs are additionally supplied in the repository for immediate use.
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In this work, we present a description of NPCoronaPredict,
the computational pipeline we have developed to enable the
prediction of the corona for NPs immersed in solution
containing multiple potential adsorbates�typically, but not
necessarily, of biological origin�with an overview of the
generic workflow presented in Figure 1. The basis of this
material-specific prediction is a set of interaction potentials
based on the atomistic structure of the NP surface for an
example of each material and the small molecules or molecular
fragments of interest, taking into account the presence of
solvent and ions as necessary. Correction functions are applied
by the software to these potentials to convert from the example
geometry to the actual geometry for the NP of interest and
used as building blocks to construct potentials for more
complex macromolecules. This reuse of potentials substantially
reduces the required computational time which would
otherwise be required while still preserving details from the
initial atomistic simulations. The required input potentials are
supplied for a range of materials obtained via atomistic
simulations and cover the adsorption of AA side chain
analogues (SCAs), lipid fragments and sugars to a range of
carbonaceous, metallic, and metal oxide structures.9−11,15−17

In brief, the methodology proceeds as follows. The user
specifies a target NP or complex of nanoparticles NPs,
selecting from a list of available materials and assigning a
shape and radius as desired, and provides a list of molecules
and concentrations present in the medium. Each macro-
molecule, e.g., a protein, is decomposed into a set of coarse-
grained beads, e.g., individual AAs. The geometry-corrected
interactions between each bead type and the nanomaterial
surface are computed and used to create an overall interaction
potential between the NP and macromolecule by summation
over all beads. Adsorption energies at a range of relative
orientations are extracted from this potential and used to
estimate adsorption and desorption rate constants for each
orientation of each molecule. These are used as input to a
kinetic Monte Carlo (KMC) simulation of the corona
formation, which provides numbers of each type of adsorbate
present in the corona as a function of time.
We stress that the general methodology is by no means

limited to these surfaces or biomolecular fragments, or indeed
to considering only proteins or other biomolecules. To take
advantage of this, the repository also contains a large databank
of input potentials generated for a wider range of surfaces and
approximately 200 small organic molecules generated via a
machine-learning (ML) method (PMFPredictor) based on
atomistic force fields for the materials and molecules.18,19 This
approach enables the rapid generation of even further input
potentials for surfaces given an atomistic force field and
structure, while new small molecules can be generated and
parametrized using the GAFF force field20 and acpype21

software via their SMILES code. More generally, the user is
free to parametrize their own surfaces or chemicals as required
to extend the NPCoronaPredict software suite to their own
particular needs through their own preferred methodology, and
the software is designed to be agnostic to the source of these
inputs, although we recommend the use of the PMFPredictor
methodology since this is designed to produce output
compatible with NPCoronaPredict and is available open-
source.19 We further extend the functionality by providing
software tools for decomposing larger organic molecules, e.g.,
drug candidates, into fragment-based models compatible with
this software.

Our multiscale approach has been developed to take
advantage of the UnitedAtom and CoronaKMC method-
ologies first described elsewhere9,12 while expanding these to
cover a far greater range of use cases beyond the adsorption of
proteins first considered, and provides a convenient pipeline to
enable prediction of the corona with minimal user
intervention. In particular, the corona for a wide range of
simple NPs consisting of a single material type and fixed radius
can be generated for a target mixture of proteins and other
biomolecules by running a single command or via a graphical
interface. We have also significantly improved the ability of the
software to handle complex cases such as proteins with
concave or hollow regions into which a small NP may dock.
The repository as described in this work can be obtained via git
at22 and corresponds to Release v1.0.4. The previous version of
the code stored at the former UnitedAtom package location23

is outdated and should no longer be used, but is kept for
historical purposes. Since the code remains in active develop-
ment future versions may have altered behavior compared to
the version described here, but this will be indicated via
updated version numbers. A C++ compiler with the boost
libraries and headers installed is required to compile
UnitedAtom, while CoronaKMC requires a Python 3
installation with full dependencies given in the documentation.
A QT installation is also required to compile optional graphical
interfaces. In the following sections, we provide a detailed
description of each component of the suite, including the
underlying methodology, required inputs and expected outputs
as well as examples of usage and validation of individual
components.

■ PACKAGE OVERVIEW
The NPCoronaPredict package consists of two main
components, UnitedAtom and CoronaKMC to predict
biomolecule−NP adsorption energies and corona contents
respectively via a multiscale coarse-grained approach. It also
contains a number of additional scripts and tools to simplify
the use of these modules, prepare input, and enable a
comprehensive characterization of the corona formed by a
particular NP in a given medium.
These scripts are interconnected as shown in Figure 1, which

provides an overview of the tools included and the data
required as input for each step. The supplied NPCoronaPre-
dict.py script and NPCoronaPredict-GUI tool automate many
of these steps, requiring only that the user provide a list of
biomolecules of interest and choose a material from the
predefined options provided in the Material Library, then
select a geometry and size for the NP. All remaining steps are
then performed automatically by the software. However, the
general procedure remains the same if the user chooses to run
each component manually. First, UnitedAtom computes
binding energies for each target biomolecule by summing
over interaction potentials between small fragments of the
biomolecule and the NP. This requires the Hamaker constants
and Bead-surface PMFs noted in Figure 1 as input, which we
provide for a wide range of template materials and which are
automatically adapted to the particular geometry of the NP
requested by the user by the software. The resulting adsorption
energies are then translated to rate constants for adsorption
and desorption for each orientation and output to a new file by
a Python script supplied in the repository. The second main
program, CoronaKMC, reads this file as input and performs a
KMC simulation of the entire corona, outputting the number
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of each type of biomolecule adsorbed to the surface of the NP
as a function of time.

■ UNITEDATOM: BIOMOLECULE−NANOPARTICLE
ADSORPTION AFFINITY

The UnitedAtom (hereafter UA and stylized as a single word
to distinguish from generic united atom methodologies)
software tool is designed to efficiently calculate the adsorption
energy of rigid biomolecules consisting of well-defined repeat
units to an NP through a coarse-grained (CG) methodology.
Throughout, we use “biomolecule” to refer to a rigid structure
consisting of one or more CG adsorbate beads (ABs). The NP
is represented in terms of one or more units we refer to as NP
beads (NPBs), which represent a simple geometrical shape
(sphere/cylinder/cube) of a specified material. Thus, the NP
itself is also coarse-grained. The general methodology has been
published in detail elsewhere9−11 and is summarized in this
work. In overview, for a specific simulation configuration and
input set consisting of a biomolecule structure and an NP, the
pairwise interaction potentials between each NPB and AB is
used to produce an overall interaction potential between the
biomolecule in a specific orientation and the NP as a function
of the distance between the centers of mass of the two objects.
From this potential, an orientation-specific adsorption energy
is extracted and recorded. This procedure is repeated for the
full range of orientations of the biomolecule relative to the NP
to produce a table of adsorption energies. In the following
sections, we provide an overview of the methodology and
discuss the required inputs in more detail.
Methodology. When executed, the UA program performs

the following steps: construction of potentials for each type of
AB component of the large biomolecule to each type of NPB,
generation of samples of different orientations of the
biomolecule relative to the NP, summation of the interaction
potentials over all the AB as a function of their position in the
biomolecule−NP complex, and integration of the resulting
total potential over distance to produce the adsorption energy.
The required potentials are primarily generated from
precomputed, material-specific sets of tabulated potentials for
each AB, usually PMFs computed through atomistic
simulations. Although these must be externally computed for
each nanomaterial, this need only be done for one geometry
per material, e.g., a planar slab, since UA applies corrections to
remap these tabulated potentials to spheres, cylinders or cubes
of arbitrary size. The remaining potentials are computed on-
the-fly by UnitedAtom from known expressions for the
Hamaker and electrostatic potentials, requiring only Hamaker
constants and surface electrostatic potentials.
First, the NP structure is generated or loaded. A bounding

radius R0b, representing the solid core of the NP is computed
from the outer radius of the largest NPB if this is not manually
set in the configuration file. An outermost bounding radius R1b
is computed from max(|rn| + Rn), where |rn| is the distance of
the bead center from the origin and Rn is the radius of the
NPB, if this value has not been manually set. This
methodology is chosen to produce reasonable results for an
NP consisting of a core and brush configuration, for which the
inner radius encapsulates the core and the outer radius ensures
that all of the brush is included. We note that these
automatically assigned values can be manually overridden if
desired, which may be necessary for NPs without a well-
defined core such as agglomerates. Next, the required
interaction parameters for all target AB types are loaded and

the interaction potentials between each type of NPB and AB
are computed. We discuss these in more detail later, but in
brief these potentials include a short-range tabulated potential
which is typically a potential of mean force (PMF), and long-
range Hamaker and electrostatic components. In the default
methodology, the interaction between an AB type (ALA, GLY,
etc.) indexed m and the total NP complex is then computed
along a single axis by summation over all NPBs indexed n, that
is

= *U z U r( ) ( )m
n

n m
NPs

,
(1)

where r* = r*(xn, yn, zn, z, Rn) is the geometry-specific closest
approach of a AB center at (0, 0, z) to the NPB of size Rn and
with center at (xn, yn, zn), and the input potentials depend on
the particular AB−NPB pair and are described later. If this
presummation is disabled, then the computed potentials for
each NPB and AB type Un,m are instead stored in memory for
later use.
With the NP structure defined, the biomolecules of interest

are loaded sequentially and orientational sampling is
performed. First, the biomolecule is shifted such that its
center of mass (COM) is defined to be (0, 0, 0) and rotations
are applied to set the biomolecule to the target orientation.
This orientation is defined by two angles ϕ, θ and optionally a
third angle ω if provided. The input structure for a given
biomolecule is rotated by an angle equal to −ϕ around the z-
axis, followed by a rotation of 180°−θ degrees around the y-
axis. Depending on the selected geometry and configuration
options, a final rotation of ω around the z-axis may then be
applied; this functionality is disabled for basic spheres by
default but can be manually enabled for anisotropic NPs and is
automatically enabled for cylindrical NPs. Following this
rotation, the vector originally defined by (cos ϕ sin θ, sin ϕ sin
θ, cos θ) is mapped to (0, 0, −1), which is normal to and
pointing toward the surface of the NP, while the angle ω
produces a rotation around this axis or, equivalently, a rotation
of the NP. Note that if the NP is symmetric with respect to
rotation around the z-axis the rotation around ω will not
change the final output. We further note that in the original
frame of reference of the biomolecule as specified in the input
.pdb file, the NP is located at spherical coordinates given by ϕ,
θ. The biomolecule is then translated along the line (0, 0, z) to
define its location at a fixed NP−offset distance h, where a
range of values of h are sampled during the calculation
according to limits discussed later.
In the default presummation model, the NP complex−

biomolecule potential is then obtained by summation of Um(z)
over all ABs indexed i,

= +U h U x y z h( ) ( , , )
i

i m i i i i
ABs

( )
(2)

where xi, yi, zi are the bead locations defined by the geometry
of the molecule and h, ϕ, θ, ω, the AB type for bead i is
denoted m(i), and αi is a per-residue weight, with xi, yi, zi, αi
read from the input file as discussed in Section “ Biomolecule
Definition”. This default behavior performs acceptably well for
isotropic NPs but does not produce meaningful results for an
NP decorated with a brush, for which the potential
experienced by a given AB depends on all coordinates and
not just its distance from the NP. In this case, we recommend
disabling presummation such that the potential is instead given
by
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= +U h U x y z x y z h( ) ( , , , , , )
n i

i n m i n n n i i i
NPs ABs

, ( )
(3)

This double summation substantially increases the required
computational time but produces a more physically accurate
result. If presummation is not disabled, the physical geometry
of the NP and presence of brush beads is accounted for in a
less accurate way by imposing a small “overlap penalty” if any
AB is determined to be in a location which would overlap with
one of the NPBs. For reasons of numerical stability, an
additional extreme-short-range potential is also applied in both
of these summation models to prevent the calculation
diverging when sampling reasons of space in which an NP
and AB overlap, which we define to be when the center of the
AB is at a distance of under 0.1 nm from the surface of the
NPB. This potential is not directly parametrizable by the user
and has the form Ux(h) = (0.1/h)12 − 1.0 in units kBT and is
set to 0 for h > 0.1 nm such that it does not contribute to the
potential in realistic conformations.
Once the potential summed over all ABs is obtained, UA

then performs a free-energy integration,

=
[ ]

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
E k T

e
ln

d

d

R

R U h k T

R

RB

( ) /

min

max B

min

max

(4)

where α = 2 for spherical coordinates, α = 1 for cylindrical
coordinates and α = 0 for planar systems, and we use the
variable ξ to represent the distance from the center of the NP
to the COM of the biomolecule. By default, T = 300 K but this
parameter may be set in the configuration file. The bounds of
integration are automatically chosen based on the NP
geometry and the structure of the biomolecule as follows.
The inner bound Rmin gives the closest approach of the COM
of the biomolecule to the COM of the NP complex and is
computed from the structure of the biomolecule and the NP
binding radius R0b using one of two methodologies. The first,
applied by default, is chosen to approximate the situation of
the biomolecule approaching from infinity along the z-axis and
stopping at first contact with the NP, i.e., at the maximum
COM−COM distance such that a bead of the biomolecule is
in contact with the NP or when the COM−COM distance is
equal to zero, whichever occurs first. The second, chosen if the
user enables the “full-scan” mode, instead chooses this lower
bound such that the COM of the biomolecule is placed as
close as possible to the COM of the NP without any ABs
existing inside the NP’s inner radius. In both cases, the outer
bound of integration is then set such that the distance between
the plane defined by (0, 0, R1b) and the lowermost point of the
biomolecule is equal to 2 nm for consistency with previous
versions of UnitedAtom and to ensure that all ABs are an
adequate distance from all NPBs that they may be taken to be
noninteracting.
This integration is repeated for each target orientation. By

default, the angles ϕ, θ are sampled on a grid with ϕ ∈ [0°,
360°] and θ ∈ [0°, 180°]. This grid is divided into units of
area 5° × 5°, with 64 points selected at random with uniform
density inside each of these units. The adsorption energy is
calculated for each of these 64 subsamples and averaged
together to reduce artifacts and reflect uncertainty in the exact
orientation of the protein. By default, this averaging employs a
simple, unweighted mean, but the user can optionally enable a
mode in which the local energies are averaged by their

Boltzmann weights. The resulting average is then reported for
the nominal lower limit of the region, that is, the output value
for ϕ, θ is the average of 64 values in the region [ϕ, ϕ +5°] ×
[θ, θ +5°] such that the average value sampled is ϕ + 2.5°, θ +
2.5°, which should be used in postprocessing of these results.
Note that these oversamples points close to either pole of the
sphere with θ → 0° and θ → 180°, which must be corrected
for when postprocessing results as discussed later. For
postprocessing, we stress the importance of following the
correct rotation procedure to avoid misinterpretation of
results. Since rotation matrices in three dimensions do not
commute and a rotation of 180°−θ produces a very different
result to a rotation of θ, it is vital that the rotations are applied
in the correct order and using the correct magnitude, Rz(−ϕ)
followed by Ry(180°−θ).
Configuration File. UnitedAtom is executed using the

command “UnitedAtom−configuration-file = x.config”, where
the configuration file instructs the program where to find all
the required inputs and specifies parameters for the calculation,
see Tables S1 and S2 for further information. Given the
complexity of the configuration file, it is recommended that
either a pre-existing template is used, with examples provided
in the examples folder in the repository, or the RunUA.py
script is employed to generate a suitable configuration file. This
script takes as user input a folder containing target
biomolecules and an NP material chosen from a predefined
list, together with the radius and zeta-potential. We note that
the software code interprets the supplied zeta-potential as the
value of the electrostatic potential at the surface of the NP.
This is not always valid and the actual surface electrostatic
potential should be used if known. Further options, e.g., the
temperature and ionic strength can be set as needed as
described in the Supporting Information.
Biomolecule Definition. Each biomolecule of interest is

represented as a list of atomic coordinates using the PDB file
format, using only CA atoms, with the three-letter residue code
used to identify the specific set of interactions to employ for a
bead at that location specified by the x/y/z coordinates (in
Angstroms) fields. Further details about the specification of
these files are available in the Supporting Material.
Typically, a standard protein structure file obtained from the

PDB,24 AlphaFold,25,26 I-TASSER27 or most other sources will
be directly compatible with UnitedAtom, provided it adheres
to the standard PDB file format as discussed above with fixed-
width columns as provided in the PDB specification.
Optionally, preprocessing can be applied using the included
script PreprocessProteins.py, which rotates the proteins into a
standard coordinate system and replaces protonated residues
as necessary, see Supporting Information for details.
For nonprotein biomolecules, a suitable CG representation

is not necessarily available. Single-bead models for all the small
molecules/biomolecular fragments are provided in pmfp-
beads.zip, while larger molecules must be represented in
terms of these available beads. For these more complex cases,
we have developed a script (MolToFragment.py) to produce
input compatible with UA based on matching fragments of an
input molecule to predefined beads, with an example shown in
Figure 2 using the “ForwardsMatching” algorithm included in
this script. In brief, this script attempts to break down a target
molecule into smaller fragments by matching SMILES codes of
potential fragments to those corresponding to molecules which
have already been parametrized. Where possible, we
recommend the use of expert knowledge to produce mappings,
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since this may identify symmetries that the matching algorithm
does not identify and this algorithm may require breaking ring
structures to achieve a match. For more advanced users,
additional modes are implemented for which generated
splittings do not need to correspond to pre-existing fragments,
e.g., the “EqualParts” method in MolToFragment.py or the
BRICs method as implemented in rdkit.28 These will typically
require the production of new interaction parameters but may
produce more physically meaningful representations as these
methods will not break rings. For manual generation of
biomolecules, it is highly recommended to adapt existing
templates to ensure that all fields are located in the correct
columns; in particular, if the occupancy field is misaligned the
bead will typically be assigned an occupancy of zero and thus
not contribute to the binding energy.
NP Definition. Simple NPs consisting of a single

component can be defined directly in the configuration file
using the “radius” and “zeta-potential” lists together with a
specified Hamaker file and surface potential directory, with UA
automatically generating all combinations of these two for the
material and shape in question. This further requires setting
the np-shape parameter, which takes the value 1 to produce a
sphere, 2 for a solid cylinder with planar-to-cylindrical
potential mapping (see next section), 3 for a cube (planar
mapping), 4 for tube (cylinder-to-tube mapping) and 5 for a
solid cylinder (cylinder-to-cylinder mapping). Here, a tube is a
hollow cylinder suitable as a model for single-wall carbon
nanotubes (CNTs) while cylinders have a solid center to
represent elongated NPs or multiwall CNTs. For more
advanced NPs consisting of multiple components, e.g., a core
with a shell or a brush, or an agglomeration of smaller NPs, the
NP is defined using a specialized file format to instruct UA on
the location and nature of all NP beads, with a simple example
shown in Figure S7, and the np-shape option sets the global
coordinate system and it is generally recommended that this be
set to the spherical value. These files can be constructed
manually and descriptions of the required file format are
provided in the documentation in the repository, or the
supplied GenerateNanoparticle.py script can be employed to
generate NPs according to predefined combinations of shells

and brush densities. A graphical tool NPDesigner (Figure 3) is
also provided to simplify the production of common NP
configurations, i.e., combinations of single beads, shells and
brushes, with brushes generated one layer at a time with beads
placed at locations using the algorithm presented in ref 29,
with the output produced in either the .np format required for
UA or in .pdb format for ease of visualization. Note that the
NP is not rotated in UA itself, except for an effective rotation
applied by the rotation of the biomolecule by an angle ω if this
is enabled, which is equivalent to rotating the NP around the z-
axis by −ω. If more complex orientations are required they
must be supplied as extra .np files with the rotation applied
manually, using e.g., Arvo’s algorithm to produce rotations
which result in an isotropic distribution of new orientations.30

This algorithm is implemented in NPDesigner to allow for the
production of multiple output files corresponding to the same
NP in different orientations.
Input Potentials. UA requires parameters for the

interaction potentials for each biomolecule bead type with
each NPB type. Three main classes of potentials are used in the
UA framework, with the potential for an AB of type i with an
NPB of type n given by,

= + +U d U d U d U d( ) ( ) ( ) ( )i n S i n H i n i n, , , , , el, , (5)

where d is the distance of closest approach between the beads,
US is a tabulated short-range (surface) potential corresponding
to the interaction between the AB and the surface of the NP,
UH is a Hamaker-like (integrated vdW) potential and Uel is an
electrostatic potential. The tabulated short-range potential US
must be provided for each NP material and AB by specifying a
folder for that material containing a set of files XXX.dat, where
XXX is the three-letter code associated with that AB and must
be consistent with the definition used in the configuration file
and biomolecule structure file to ensure that UA assigns the
correct potential to each bead. Each surface potential file
should contain a comma-separated table of values for the
potential (units kJ·mol−1) as a function of the distance of the
center of the bead to the surface of the NP (units nm) as
shown in Figure S8. We note that some older files use a fixed-
width file format, which remains functional within UA for
backward compatibility but should be considered deprecated
in favor of comma-separated files.
The surface potential file is most frequently a PMF obtained

via metadynamics, umbrella sampling or ML methods, but can
in principle correspond to any distance-dependent potential to
apply representing the interaction between a given AB and a
particular nanomaterial surface. All tabulated potentials
supplied in the repository correspond to PMFs obtained either
via atomistic molecular dynamics simulations with enhanced
sampling (metadynamics or umbrella sampling) or the output
from a machine-learning model trained on atomistic PMFs. We
note, however, that in principle these can be computed
through other sources and UA is largely agnostic to the means
of computation. Due to the high computational cost of
generating these potentials, they are typically are computed for
each AB of interest (e.g., the set of AA-SCA beads) to a
particular NP topography (e.g., a planar surface or a cylinder of
predetermined radius) of a specific material. To allow these to
be used for NPs of the same chemical composition but
different geometries or radii, a correction function is applied to
map these to the expected potential generated by the actual
NP of interest, e.g., mapping from a planar configuration to a
spherical NP of the given radius. This correction function is

Figure 2. Automatically generated bead mapping for a target molecule
(DPPC) using the MolToFragment.py script included in the
repository, with highlighting applied to indicate the resulting
fragments and manual annotation added to indicate SMILES codes
for each bead. The mapping has been constrained to use only bead
types for which interaction potentials are available.
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generated under the approximation that the main contribution
to the surface potential arises from the 1/r6 vdW term, such
that the ratio of the tabulated potential generated by a volume
v1 to that generated by the volume v2 is approximately equal to
the ratio of the r−6 potential integrated over these two volumes,

=
U r v
U r v

r r r

r r r

( , )
( , )

( ) d

( ) d
v

v

S 1

S 2

1
6

1

2
6

2

1

2 (6)

where the integration runs over all points ri in the NP volume
region vi included in the calculation of the surface potential,
generally taken to be the volume of the NP within the typical
LJ cutoff for that force field.9,31,32 This correction is
implemented for the plane-to-sphere geometry as originally
discussed in9 and has been extended to plane-to-cylinder,
cylinder-to-tube, and cylinder-to-cylinder geometries. Although
this is an approximation, it has been shown that e.g., the
cylinder to plane transformation does not significantly alter the
form of a PMF,15 which we attribute to the relatively short-
range nature of the interactions involved. Alternatively, no
correction can be applied, which is required for PMFs

generated for small polymer beads. For PMFs generated for
other geometries, it is recommended to manually map these to
a planar configuration such that UA can automatically remap
them to the target configuration as required. At present, the
PMF is a function of only the distance of the bead to the
surface and does not account for the orientation of the
molecule or internal degrees of freedom. We therefore
recommend that PMFs represent small, reasonably rigid
sections of biomolecules to minimize the errors introduced
by this.
The tabulated short-range potential is assumed to

correspond to only a fraction of the total volume of the NP
close to the ABs. To account for the rest of the NP, UA
generates a long-range Hamaker-like potential UH correspond-
ing to the integration of the vdW potential over the volume of
the NP and AB.31,32 Unlike the traditional Hamaker approach,
the integration is performed only over elements of each bead
separated by a distance greater than a cutoff distance rc and is
not limited to sphere−sphere interactions only, with the
generic integral given by,

Figure 3. An example NP consisting of an anatase core decorated with carbon black beads produced using the NPDesigner software tool. The
locations of beads are shown in the right-hand table, while the bottom table lists definitions of all bead types which have been added so far. A
visualization of the NP is shown in the upper left corner, with the dashed blue line indicating the NP bounding radius at the nominal surface and
the red dashed line indicating the limit at which adsorbates are assumed to be unbound.
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where AH is the Hamaker constant for that particular AB−NPB
pair interacting through water,31 Θh(x) is the Heaviside theta
function, used to set the integral to zero within the exclusion
region, rc is the cutoff distance at which the interaction is
covered in the PMF (assumed to be equal to the LJ cutoff in
the metadynamics simulation) rNP is a point in the NP, rAB a
point in the AB, and the integration runs over all pairs of
points. This produces a function that smoothly switches
between different regimes as necessary without a discontinuity
at distances of rc which would be introduced if the interaction
is simply switched on once the bead center is sufficiently far
from the NP. For a spherical NP at long-range eq 7 reduces to
the standard Hamaker expression, whereas different results are
obtained for cylindrical geometries or for configurations at
close range to avoid double-counting elements of the adsorbate
or NP beads. For cylindrical geometries, this expression is
evaluated partially numerically due to the lack of a closed-form
analytical result. The required Hamaker constants are supplied
in an input Hamaker file for each NP material, consisting of
one line per AB type, with the required input format specified
in src/HamakerFile.h as depicted in Figure S9. These can be
computed through Lifshitz theory32 or through summation of
force field parameters as implemented in either the Enalos
Hamaker tool33,34 or the scripts supplied in ref 19, with the
latter used to produce Hamaker constants matching the
materials with ML surface potentials included in the repository.
This also requires the radius for the bead as set in the
configuration file, where the radius is typically calculated from
force field parameters or experimental data as discussed later.
The third contribution is an electrostatic potential, for which

we employ the Debye−Hückel approximation to the Poisson−
Boltzmann equation to represent the effects of electrostatic
screening while allowing for simple analytical expressions for
all geometries to be determined. The resulting potentials are
defined by the Debye length κ−1 as specified in the
configuration file, the charge of the AB qi, the surface potential
ψ0, and the shape of each NPB. For a spherical NPB, the
resulting potential is given by,

=
+

U q
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R d
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cylindrical by,

= +
U q
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and planar by,

=U q ei
d

el 0 (10)

noting that for all three we model the AB as a point particle
such that d is the distance from the surface of the NPB to the
center of the AB. An expression for finite cubes based on an
expansion in terms of spherical harmonics is implemented in
the code but is employed only when the size of the NP is on
the same order of magnitude as the Debye length, which is
generally less than 1 nm and so the planar potential is typically
acceptable. For historical reasons, the value of the surface
electrostatic potential is referred to as the zeta-potential and a
Bjerrum-length parameter is also read in from the config-
uration file. The Bjerrum length is unused except in certain

special cases discussed further in the UA documentation; in
typical operation, this parameter can simply be left at its default
value as it does not enter into the electrostatic calculations. We
also note that many PMFs for charged surfaces already include
the effects of the charge−charge interaction and, since the
Debye length in UA is typically on the order of 1 nm, the
majority of the surface charge is already accounted for by the
PMF. Thus, in some cases, it may be more accurate to set the
electrostatic surface potential to 0 mV to avoid double-
counting the charge−charge interactions, unless it is known
that the PMFs did not include a charge, e.g., the set of
zerovalent metal PMFs or if the electrostatic potential is used
to offset the charge interaction already factored into the PMF
to produce a different overall surface charge.
Output. The main output from a UA run is a datafile with

an automatically generated filename of the form “biomolecu-
le_radius_zeta.uam” for each NP−biomolecule pair, stored in
the designated output folder defined in the configuration file.
This datafile contains a table of values mapping each
orientational sampling range (given as left-hand edges for ϕ,
θ and the fixed value for ω) to a local average of the adsorption
energy (provided in units kBT and kJ·mol−1), the standard
deviation of adsorption energies in this interval, mean-first-
passage-times (if enabled, else this field contains the value −1),
the distance between the nominal surface of the NP and the
center of the closest AB, and the average number of residues in
close-contact (at a surface to AB center distance of under 0.5
nm) in that range of orientations. Typically, this datafile is
postprocessed to provide further results. A very common
application is the generation of a heatmap plot as in Figure 4 to

highlight the general adsorption affinity of the biomolecule to
the NP and identify strongly adsorbing orientations and
plotting the most favorable conformation as in Figure 5 (both
generated using the script provided in tools/VisualizeUAR-
esults.ipynb, see Supporting Information).
To provide an immediate assessment of the affinity of a

given biomolecule to an NP, the binding energy is averaged
over all orientations according to a given weighting scheme,
e.g., the simple average:

Figure 4. An example heatmap plot of binding energies produced for
bovine serum albumin (PDB code 3V03) to a silver NP (Ag (100), R
= 27 nm, surface potential −31 mV). The location of the most
favorable protein orientation is marked with a green ring at ϕ =
267.5°, θ = 102.5°.
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In both of the above, the index i refers to a specific orientation
with associated angles θi, ϕi and adsorption energy Ei = E(θi,
ϕi). Note that UA output files contain the left-hand edge for θ
and thus these must be offset by 2.5° to obtain the central bin,
then converted to radians before calculating sin θ. Of these two
averages, the simple average can be thought of as the affinity of
an adsorbate which is at a random orientation with respect to
the surface of the NP, i.e., during the initial stage of the corona
formation. The Boltzmann average, meanwhile, is more
strongly weighted toward orientations with high binding
affinity, and so reflects the thermal equilibrium achieved in
the later stages of corona formation. A script ExtractBindingE-
nergies.py is provided to calculate these averages for
convenience and produces a table of energies for a given set
of input folders for comparison across biomolecules and
further use. In certain cases, these averages must be computed
taking into account the fact the protein can bind to multiple
different surface types, e.g., different crystal facets, Janus
particles, or if multiple values of ω have been sampled for, e.g.,
CNTs. This is achieved by generalizing the above expressions
to include an additional weighting term in the numerator and
denominator, wj, to reflect the abundance of that particular
surface,
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as demonstrated in the MultiSurfaceAverage.py script included
in the repository. Further pre- and postprocessing scripts are
documented in the Supporting Information including
advanced visualization tools.

■ CORONAKMC: CORONA PREDICTION VIA KINETIC
MONTE CARLO

The adsorption affinity of a biomolecule to an NP is not
necessarily predictive of its abundance in the corona, especially
when there is competition between multiple adsorbing species
or orientations of the same species. A large protein may adsorb
very strongly but exist in such vanishingly low concentrations
compared to other potential adsorbates that its overall
abundance remains low, or it may be out-competed by
biomolecules that individually adsorb less strongly but occupy
a smaller area such that the total energy is more favorable by
adsorbing a large number of these, or even be out-competed by
another absorbate which binds even more strongly. If,
however, no other adsorbates are present then this large
protein will then be a major component of the corona.
Consequently, a prediction of the corona content must take
into account this competition between all adsorbates present.
A very simple first-order prediction of the corona content

may be obtained using the mean-field approximation.35,36

Given a set of adsorbates i with adsorption free energies Ei,
concentrations ci, and ni available binding sites on the surface
of the NP, where ni is inversely proportionate to the cross-
sectional area of the adsorbate, the number abundances are
approximated by,
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This simple expression neglects a number of factors, chiefly, it
allows for completely efficient packing of adsorbates onto the
surface of the NP and assumes adsorbates can deform to an
arbitrary degree. We have previously demonstrated a hard-
sphere model of corona formation which overcomes these
limitations.12,14 In this section, we discuss the implementation
of the KMC method for evaluating the corona formation as
integrated into this package. In brief, this script simulates the
sequential adsorption and desorption of adsorbates to the
surface of an NP, taking into account factors such as the bulk
concentration and availability of free surface area on the NP for
binding to take place. The NP is assumed to be a single bead of
either spherical, cylindrical or planar geometry with adsorption
occurring isotropically across its surface. Thus, if an NP
consists of multiple surfaces such as a Wulff structure or a
Janus particle, we recommend that a separate simulation is run
for each surface type of interest and the total numbers of
adsorbed proteins calculated as a weighted sum over all surface
types.
Input. The most important input to a CoronaKMC run is a

list of all potential adsorbates, defining their effective size,
concentration in the bulk, and rate constants for adsorption
and desorption. In simple cases, this file can be manually
constructed. In general, however, the BuildCoronaParams
script should be employed to automate the conversion of .uam
output and .pdb structures to the required input format. This
script takes as input a list of biomolecules and their number
concentrations in units mol/L, finds matching structures and
.uam binding energy tables and computes rate constants and
adsorption areas for each orientation of the biomolecule.13 The
output is saved in the structure shown in Figure S10, in which
each orientation of a given biomolecule is assigned an
individual identification and set of rate constants.

Figure 5. An example of the protein−NP complex produced by
postprocessing the results of a UA calculation for bovine serum
albumin (PDB: 3V03) to a silver NP (Ag (100), R = 27 nm, surface
potential −31 mV) using the VisualizeUAResults.ipynb script. The
conformation shown is the energetically most favorable orientation of
the protein. The inset shows the entire complex while the main figure
provides a cropped region to show finer details of the protein.
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Once an input set has been generated, the script is run using
Python 3. In addition to the list of adsorbates, further options
can be specified as command-line arguments when running
CoronaKMC to further control the simulation parameters.
These options are described in more detail in the
documentation and typically enable features such as manual
control over the boundary conditions and coordinate system,
whether the simulation should run in time-resolved (kinetic
Monte Carlo) or steady-state conditions (classic Monte
Carlo), specification of the amount of simulated time for
which the program should run, the use of an algorithm to
accelerate the simulation by identification of quasi-equilibrated
processes,37 the activation of the optional “displacement
mode” instead of “standard mode” (discussed later), and
other parameters. During the simulation, events are generated
corresponding to the adsorption or desorption of adsorbates.
Adsorption events correspond to the selection of a potential
adsorbate with a probability proportional to the rate at which it
collides with the NP and the generation of a random position
on the surface of the NP. By default, it is assumed that these
rates are determined using the provided BuildCoronaParam-
s.py and correspond to physically realistic values, such that the
program simulates the full time dynamics. If the optional
steady-state mode is enabled, both ka and kd for each adsorbate
are rescaled while keeping their ratio fixed. This rescaling
effectively normalizes all proteins to collide with the NP at
approximately the same rate while adjusting their desorption
rate equivalently to produce the same equilibrium state12

without the requirement to simulate the full evolution of the
corona and thus significantly reduce the computational time
required to compare to experimental results. This is valid only
in standard mode, but if this option is set then the simulation
temporarily employs displacement mode to further accelerate
convergence, see Supporting Information for more details.
The acceptance of an adsorbate depends on the selected

mode. In standard mode, the adsorbate is automatically
accepted if there is sufficient room for it to contact the NP
without the projection of this adsorbate onto the surface
overlapping with the projection of a pre-existing adsorbate, else
it is rejected. In this mode, a small, weakly binding adsorbate
may block the adsorption of a large, strongly binding
adsorbate, which may not be physically realistic for a given
system. Thus, if the optional “displacement mode” is activated,
then the adsorbate is accepted with a probability of e−ΔE/kBT/(1

+ e−ΔE/kBT), where ΔE is the difference between the binding
energy of the incoming adsorbate and the sum of the binding
energies for all currently adsorbed particles which would
overlap with the new adsorbate. If the adsorbate is accepted, all
overlapping preadsorbed particles are removed to make room
for the new one. Note that water is not explicitly included in
these simulations unless it is manually added as an adsorbate.
In standard mode, water is implicitly assumed to be accounted
for in the provided rate constants. This is indeed the case for
adsorption energies computed using UnitedAtom using the
default procedure, since the input potentials (particularly
PMFs) are computed in the presence of water and typically
feature repulsive barriers corresponding to the presence of
water. The acceptance probability in displacement mode given
above is consistent with a model of implicit water in which
water adsorbs with a reference energy of 0 kJ·mol−1 and it is
assumed that regions of the NP without explicit adsorbates are
covered in water. Thus, the adsorbate binding energies should
be calculated with respect to this reference value, i.e., to
include the requirement to displace water for adsorption. As
mentioned above, this is already accounted for in UnitedAtom.
Note that the acceptance probability in displacement mode is
defined such that adsorption which does not change the overall
energy is allowed 50% of the time such that both outcomes
occur with equal probability. Desorption occurs with a
probability dependent on the desorption rate constant; this
value is scaled slightly in displacement mode to ensure that the
ratio ka/kd remains fixed due to the decrease in adsorption for
weakly adsorbing biomolecules.
Output. During the runtime of a simulation, the number of

each class of adsorbate (summed over different orientations of
the same species) is displayed on-screen at predefined
intervals, with the same data saved to text files for further
use such as plotting the evolution of the corona as shown in
Figure 6. At the end of a simulation, coordinates for the final
corona composition are saved out including the exact identity
of each adsorbate to allow for identification of orientations
which are present in the corona and for visualization purposes
if necessary. Two such files are generated: one with a .kmc
extension, which contains the data in the internal coordinate
system and the adsorbate rate constants, and a plain text .txt
file with “finalcoords” in the filename, which contains the
adsorbate name and Cartesian coordinates. An example script
tools/CoronaKMCtoVMD.py is provided to convert an output

Figure 6. Time-evolution of the predicted corona for a set of 20 proteins (Table 1) on a 5 nm gold (100) surface, averaging over five simulations.
For clarity, only proteins still in the corona at t = 5 ms have an entry shown in the legend.
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.kmc file for a spherical NP to a .tcl script which can be run in
VMD to produce a simple visualization of the corona. More
advanced visualization can be achieved using the BuildCor-
onaCoords.py script, which produces an output .pdb file
containing coordinates based on the atomistic coordinates for
all molecules found in the corona in their correct orientations
and locations.

■ NPCORONAPREDICT: END-TO-END PREDICTION
In many cases, the same set of biomolecules must be tested
against a variety of NPs under essentially identical conditions.
To facilitate this, we have developed a wrapper script
NPCoronaPredict.py (formerly PrepareKMCInput.py) to
automate running the UA to BuildCoronaParams to
CoronaKMC pipeline for simple NPs. This script takes as
input the list of biomolecules of interest together with their
concentrations and automates setting up and performing each
step of the calculations, including fetching protein structures
from the AlphaFold repository if possible for adsorbate names
which correspond to a valid UniProt ID. As additional input, it
takes the NP size, shape, and material, along with any other
parameters to pass to UA or CoronaKMC as necessary. The
NPCoronaPredict-GUI tool provides a simplified wrapper to
this script to enable corona prediction purely via the graphical
interface.
As a demonstration of the use of this automated scanning,

we have performed corona simulations for a trial solution of 20
proteins selected from the proteome for Daphnia magna, using
the AlphaFold structures for these and selecting proteins based
on clustering of their properties. These input descriptors are
selected from a large set of descriptors calculated via
PEPSTATS, a modification of PEPSTATS to produce
properties only for surface AAs, and additional descriptors
related to the structure of the protein, with the k-means
algorithm used to select 20 proteins. The resulting proteins
and the concentrations assigned are given in Table 1, where

concentrations are chosen such that the mass concentration of
each protein is equal. We stress that this does not correspond
to a real experiment, but is done primarily as a demonstration
of the flexibility of the pipeline to handle complex mixtures of
potential adsorbates and of postprocessing techniques which
can be used on the resulting data. Corona predictions have
been performed for a set of 58 materials broadly separable into
three main groups: metallic, carbonaceous and metal/semi-
metal oxides, with the remaining materials (CdSe, gold with
organic ligands, MoS2) classified as “other”. For consistency,
we employ the ML PMFs, use a radius of 5 nm for all NPs,
taking spherical NPs except for CNTs and a cylindrical
platinum (001) NP included to enable a comparison to the
spherical form. Simulations are performed with an internal
averaging over five instances of each NP to reduce statistical
artifacts due to the low levels of adsorbed proteins at this size.
The GetCoronaStats.py script included in the repository is
employed to postprocess these by calculating corona-totaled
values of each protein descriptor X by calculating ⟨X⟩ =
∑ixiNi/∑iNi, where xi is the value of X for adsorbate i and Ni
is the number of instances of that adsorbate in the corona. We
use these to describe each material in terms of a pair of simple
descriptors: the total mass and charge of adsorbates,
normalized to the surface area of the NP to ensure a fair
comparison between spheres and cylinders. The resulting
values after 5 ms of simulation time are plotted in Figure 7 to
demonstrate the use of this pipeline in performing a rapid
categorization of nanomaterials in a given medium. It can
clearly be seen that the three main groups specified above form
clusters in different regions of the chart, although with some
overlap between these, and that cylindrical NPs typically
exhibit less adsorbed mass per unit surface area than spherical
forms. We attribute this latter effect to the difference in
packing efficiency around spheres compared to cylinders.12

The NPCoronaPredict−GUI Graphical Interface. To
assist new users and to allow for rapid interpretation of results,
we have designed a simplified GUI named NPCoronaPredict-
GUI to streamline some of the more common uses for UA as
shown in Figure 8. This GUI combines three main tools to
simplify the potentially complex procedure. First, a list of
biomolecules of interest can be edited on the “Molecule List
Editor” tab and structures for these found if needed. Structures
defined here are automatically retrieved if needed either from
the RCSB PDB24 if they are given a label in the form “PDB-X”,
where X is the PDB ID for that protein, or from the AlphaFold
database25,26 for identifiers of the form “AFDB-X”, where X is a
UniProt ID. Note that structures can be manually provided if
needed and will only be fetched remotely if none is located and
if the user requests this. The main functionality is located on
the “Run” tab, which allows the user to generate basic NPs or
select an output from NPDesigner, and select a protein (or list
of biomolecules) of interest. The GUI can then be used to call
the UnitedAtom executable via the main NPCoronaPredict
script and show the results as these are computed. For
simplicity, this uses the steady-state options for CoronaKMC
to attempt to provide the final corona as quickly as possible
without the user needing to run the application for an extended
period of time. Once a run is complete, the generated data can
be visualized as a heatmap and the location of the protein
relative to the NP is visualized. The user may furthermore
perform a corona prediction for a given list of proteins on a
target NP by activating the relevant settings. For reasons of
computational efficiency this is set to produce the steady-state

Table 1. Proteins Selected from the Daphnia magna
Proteome Based on k-Means Clustering of PEPSTAT and
Other Descriptors

ID concentration [μM] mass [kDa] charge [e]

A0A162CU06 3.76 13.31 4.5
A0A0P5SKA7 1.20 41.56 12.5
A0A0P5LW78 2.29 21.83 −1.5
A0A164 KXJ8 0.48 103.34 9.5
A0A0P4XG24 5.23 9.57 10.5
A0A0N8BEG1 1.49 33.64 −4.5
A0A0P6AYL2 7.20 6.95 3.5
A0A0P5SS69 2.02 24.80 3.5
A0A0P5WS26 1.72 29.01 6.5
A0A164Z8Z4 0.51 98.27 0.0
A0A164 V4J0 3.76 13.31 9.5
A0A162NKY0 4.82 10.38 2.0
A0A0P6BQN1 5.33 9.37 11.0
A0A164Z4N7 0.79 63.42 0.0
A0A164F1M8 1.21 41.37 8.0
A0A162NFS0 0.87 57.50 0.0
A0A164 × 841 1.37 36.45 8.0
A0A164SWA3 8.79 5.69 4.0
A0A162BQ10 3.55 14.08 −6.0
A0A164U6G0 1.93 25.90 5.5
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rather than a full time-resolved corona prediction under the
assumption this is more experimentally relevant. We stress that
by design, this interface does not incorporate the full
functionality of the NPCoronaPredict package, but provides
a simplified experience for new users or those less familiar with
command-line operations.

■ MATERIAL LIBRARY
To enable a wide application of the software discussed here,
PMFs and Hamaker constants have been computed and
included in the repository for a wide range of materials, with a
particular focus on the adsorption of AA/SCAs to these
surfaces. In this section, we present an overview of the
calculations used to parametrize these interactions and

descriptions of the available surfaces. Calculations performed
using these potentials should cite the original works.
PMFs. Tabulated PMFs for sets of biomolecular fragments

have been computed using atomistic metadynamics or
umbrella sampling simulations for a range of materials: gold
(100, 110, 111), silver (100, 110, 111), aluminium, iron,
carbon nanotubes (pristine and modified with a range of
functionalizations), graphene (1, 2, 3 layers), graphene oxide,
reduced graphene oxide, amorphous carbon (three morphol-
ogies), titanium dioxide (two rutile, two anatase surfaces),
silica (amorphous and quartz), iron oxide, cadmium selenide.
We also supply PMFs for a PEG trimer to allow the
construction of brushes but note this requires additional
configuration or the use of the PEG-Slab potentials derived
from this, see Supporting Information.11 Due to the differing

Figure 7. A plot of predicted surface-area normalized corona mass and charge for a variety of nanomaterials immersed in a medium of 20 proteins.
The proteins are selected from the Daphnia magna proteome based on a cluster analysis to demonstrate the use of the pipeline to assign a simple
low-dimensional representation to arbitrary nanomaterials broadly matching their chemical classes (metallic, carbonaceous, metal/semimetal
oxide), with the other category including semiconductors and metals with organic ligands attached. An exponential smoothing with a time constant
of 0.1 ms has been applied to reduce noise.

Figure 8. A demonstration of the NPCoronaPredict-GUI interface for performing NP−protein binding energy calculations using a simplified set of
options. The first panel (top left) shows the interface for automatically downloading protein structures based on their ID. The second (bottom left)
shows the setup and output of computation for a single protein−NP pair (here human serum albumin to a rutile NP). The third (right) shows the
results visualized as a heatmap and schematic view of the favored orientation.
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availability of force fields and computational methods
(especially metadynamics settings, ionic strength and species,
and choice of fragments) used, these PMFs differ slightly in
terms of coverage of small molecules and details such as the
appropriate LJ cutoff to employ. A summary of the PMFs
provided in the library is presented in Table S3. For the
majority of these materials and including a range of further
materials of interest, a previously developed ML approach has
been employed to produce PMFs for an extended bead set and
is trained on the PMFs obtained via metadynamics as
described above.18 For full details we refer interested readers
to this prior work, which provides information on the
methodology, training set, and validation method. We have
made some minor updates to the methodology employed,
primarily a few adjustments to the network architecture, the
inclusion of additional materials in the training set (zinc
sulfide,38 zinc oxide,39 FCC copper, aluminum and
iron14,40,41), and PMFs produced for both SCAs and full
AAs for rutile using an alternative force field.42,43 We have also
made some changes in the input potentials used, with these
changes made available in the model repository.19 The most
significant correction was the reidentification of a set of PMFs
for the Au (100) surface as having been generated for full AAs
rather than SCAs, which previously led to a decrease in the
model accuracy. The final PMFs are produced “in the style of”
the methodology used for the TiO2 and carbonaceous
materials for all materials to produce a uniform standard to
facilitate comparisons across materials. Likewise, we employ
the same convention for the small molecule bead types to allow
for comparison between nanomaterials, that is, we generate
PMFs for the SCAs except for full-molecule models for proline
and glycine. A naming convention for the AA beads is
employed to match the standard expected by UA such that the
three-letter AA codes correspond to the PMF of the SCA while
the Hamaker constant is calculated for the full AA; all other
beads use the same structure for both PMF and Hamaker
constant. A preaveraged HIS bead, consisting of weighted
averages of the PMFs and Hamaker constants for HIE, HID,
and HIP, is provided for pH 7 with a range of individual charge
variants for other AAs also produced. The additional materials
include Ag (332) and (322), Pt (001), Ce (001), a set of
weathered Au surfaces with varying percentages of surface
atoms removed, Au decorated with PE and PEG brushes,
hydroxyapatite (at a range of pH values and surface indices),
stainless steel, tricalcium silicate, CaO, MoS, Al2O3, and Cr2O3,
and a range of clay materials. For all of these additional
surfaces, force fields and structures were obtained using the
Charmm-GUI nanomaterial modeler44 and the InterfaceFF
force field,45 with the exception for stainless steel for which the
structure was obtained from ref 46.
Long-Range Interaction Parameters. Special attention

must be paid to the computation of the parameters required to
evaluate the Hamaker-like long-range potentials, these being
the bead radius and Hamaker constant for each surface-bead
pair. In the following sections, we discuss in more detail how
these parameters have been calculated for the materials and
chemicals provided in the repository. We note, however, that
as with the PMFs, the user is free to supply their own
calculated values.
Bead Radii. When the standard bead set is used, the radius

is calculated according to the methodology in ref 47, which is
calibrated to reproduce experimental protein densities from the
vdW radius and coordinates of each AA. For the extended bead

set which must account for arbitrary molecules, no equivalent
procedure is available and we instead estimate the volume
occupied by the molecule based on the LJ parameters of the
atomistic representation of this molecule. We have developed
two methodologies to do so. The first models each constituent
atom as a sphere of radius σi/2 at the location given by the
coordinates used in the input structure for that molecule, and
generates points on the surface of each atom, with the convex-
hull method used to select the points generating the outer
surface of the molecule. The total volume occupied by this
surface is then computed and the radii of the sphere with an
equivalent volume are recorded. In the second approach, the
orientation-averaged self-interaction via the LJ potential
between the molecule with a copy of itself is recorded as a
function of the distance between the centers of mass of the
pair. We approximate that the effective radius of the bead is
then one-half of the distance of the first zero-crossing at which
the potential switches from repulsive to attractive, by analogy
to the standard LJ potential. This latter methodology provides
results which are generally consistent with the values from
ref,47 with a linear least-squares fit providing R2 = 0.82 when
the outlier histidine is excluded for consistency with that work.
In Supplementary Table S4 we present the results for both of
these methodologies compared to the values in ref 47 and
those used in ref 48 and extracted from solution-phase values
from ref 49. The convex-hull radii can be seen to be an
extremely good reproduction of the values found for solution-
phase AAs, which are likewise quite close to those found for
AAs in proteins.49 Thus, we recommend the use of the convex-
hull radii and have supplied these in the repository.

Hamaker Constants. The Hamaker constants used as the
overall energy scale for a given potential can be rigorously
computed using Lifshitz theory based on optical constants for
the NP and molecule.32 This constant is denoted A132, where 1
is taken to be the AA, 2 the NP and 3 the medium, typically
water, and is given by the sum of a zero-frequency term
A132(0) defined by,
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In the above, ϵi = ϵi(0) is the dielectric permittivity at low
frequency, while ϵ(iν) is the permittivity at imaginary
frequencies and νs = 2πkBT/h. For dielectric components
(solvent, nonmetallic NPs, ABs) we approximate,
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where νi is the electronic absorption frequency in the UV and
ni is the refractive index at visible wavelengths. For metal
components, we instead employ,
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where νi is the free electron gas (plasma) frequency for that
metal with ϵi(0) → ∞ and the refractive index not defined. We
assume all ABs are dielectric and that the solvent is water, such
that we only need expressions for dielectric and metallic NPs.
For a dielectric NP and approximating that all three absorption
frequencies are all equal to the same value denoted νe, A132(ν >
0) is approximately given by,
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For a metallic NP, we numerically integrate eq 16 using the
appropriate expressions for each dielectric permittivity,
allowing the absorption or plasma frequency to differ for
each component. These expressions are implemented in the
preprocessing script CalcLifschitzHamaker.ipynb as described
in the Supporting Information. Typically, the required optical
constants must be found in databases of experimental results or
computed from first principles, which may not be possible or
be extremely time-consuming. The estimation of Hamaker
constants from first principles can be also achieved through the
calculation of the LJ constant C6.

50,51 However, this method is
also time-consuming and cannot be straightforwardly auto-
mated as is required here. In the case where optical data is not
available, we instead approximately extract the Hamaker
constant from force field parameters for the species in
question. This methodology is implemented in the Enalos
Hamaker Constant Tool (EHCT),33,34 which requires only
empirical formulas and densities as input. An automated
routine to perform the calculation is also implemented in the
PMFPredictor Toolkit.19 In this method, we compute the
vacuum self-interaction Hamaker constant for a given AB by
summation over force field parameters similar to the method in
the EHCT,
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with ϵlm, σlm computed using combination rules, η = 0.64 is the
packing density for random close-packed spheres, and Vb is the
approximate volume per molecule, with this volume set equal
to the convex-hull volume as discussed in the previous section,
such that Vb/η represents the volume occupied by the
molecule in the condensed phase. This procedure typically
produces values in the range 0.1−1.0 × 10−20 J, in agreement
with the range expected for Hamaker constants for organic
molecules. We note that the computed value for water of 6.8 ×
10−20 J is slightly larger than the values presented in ref32 of
(3.7−5.5) × 10−20 J, but within an acceptable error given the
generally small contribution from the Hamaker potential for
beads of this size. We employ the same approach to generate
Hamaker constants for each surface structure, with the
exception that since the coordinates for these are assumed to
already be in the solid phase we set η = 1. In principle,
combining relations can then be used to produce the Hamaker
constant describing the interaction between each bead and the
surface in a medium w,

=A A A A A( )( )cmw cc ww mm ww (21)

These relations, however, are known to be inaccurate when the
medium is water, as is the assumed case here.32 We find in

particular that for metallic NPs, for which Amm is large, the
results are highly dependent on the relative values of Acc, Aww
since this may easily produce strongly positive or negative
values with slight variations in Acc. Thus, we instead use the
Lifshitz model as described above by finding approximate
values for the optical constants which are compatible with the
values of Acc computed from force field parameters. We neglect
the zero-frequency term since this is always less than 1kBT in
magnitude. Next, we approximate that νe ≈ 3 × 1015 Hz for all
beads, such that eq 19 can be numerically inverted to obtain n1
= n2 with n3 = 1 as a function of the Hamaker constant for the
chemical interacting with itself in vacuum as calculated above.
We assume that ϵi for this bead is a nominal value of 1.3, but
note this is effectively negligible compared to that of water.
Next, we identify whether the NP material should be treated as
metallic or nonmetallic by analyzing the fraction of its
constituent atoms which are highly polarizable in terms of
their force field parameter ϵi > 12 and quasi-neutral |q| < 0.5e.
If over half of the atoms in the structure meet this definition,
the structure is taken to be metallic with a nominal plasma
frequency of 5 × 1015 Hz and ϵ set to an arbitrarily large
number. Otherwise, we extract an effective refractive index
through the same procedure as for ABs and again set ϵr to be a
nominal value of 1.3 and assume an electronic adsorption
frequency of 3 × 1015 Hz. This produces the required set of
constants for both the material and AB. Next, we set the
medium to be water n3 = 1.33, ϵ3 = 82, νw = νe, and compute
Hamaker constants using the Lifshitz theory based on the
extracted approximate optical constants. We stress that this is
an approximate procedure and the results are generally only
correct to within an order of magnitude and are dependent on
the exact force field parametrization used. This is particularly
apparent for certain small molecules containing sp3 nitrogen in
GAFF parametrizations, which has an unusually large value of
ϵi compared to typical atoms, and in general for small
molecules containing only one or two heavy atoms due to the
low volumes of these beads producing an overestimated
numerical density. Given, however, the generally small
contribution of the Hamaker potential to UA binding energies,
this does not lead to a significant overall error, especially in the
context of the limitations of the Hamaker and Lifshitz
approach in general.32

■ METHODOLOGY DEVELOPMENT AND
VALIDATION

Here, we summarize the publications introducing or testing the
methods described above. The CG scheme to evaluate
biomolecule-NP interaction energy, the heatmaps and the
ensemble average energy using the united atom one-bead-per-
amino acid approach was first introduced in ref 8. This
methodology was improved to include the precalculated bead−
NP PMFs, including the planar-to-spherical shape correction,
in ref 9 and implemented in the UnitedAtom software tool in
place of the EspressoMD script previously used. The method
to evaluate the Hamaker constant for the interaction between
NP materials and AAs using experimental AA radii and
refractive indices was introduced in ref 47. This approach was
later validated with noble metal NPs. The method has shown a
good correlation with experimentally measured adsorption
rankings, however, the absolute binding energies were not in
agreement with experimental values due to the limitations of
the method (“rigid body” model for proteins).48 To address
the complex variety of available NPs (core−shell NPs,
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nanocomposites, layered NPs, etc.), the multicomponent
“LEGO-like” model was introduced in ref 11 and validated
by comparison to experimental results for polymer-coated NPs.
The CoronaKMC method for the prediction of protein
abundances on solid surfaces was first published in ref 12
and used for the prediction of corona abundances on silica NPs
in artificial mixtures of proteins13 and for milk proteins on
aluminum in refs 14,41.
We have repeated the set of calculations present in ref 13

using the more recent version of this package with results
shown in Table 2. Briefly, the NP is taken to be amorphous
silica of radius 40 nm and zeta-potential −29 mV. We use
AlphaFoldDB structures for all proteins to ensure all residues
are present. We have computed relative number abundances
for each species Ñi to allow a direct comparison between the
experimental and simulated results. For the experimental data,
we take
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where ri is the ratio of the intensity of the gel band for proteins
remaining bound to the corona to the intensity of the control
gel band, and [Ci] is the number concentration of that protein
in the medium. We employ this ratio to remove unknown
factors such as the dilution of each sample. For the KMC
results we simply take the ratio of the number of adsorbed
proteins per NP of that type to the total number per NP, Ñi =
Ni/∑iNi. As can be seen in Table 2, the agreement is generally
acceptable other than for the protein BLG (β-lactoglobulin),
which is much less represented in the computational corona
than in the experimental. We note, however, that the bands
associated with this protein are extremely weak in both the NP
and control lanes and that BLG is not expected to be present
as a monomer at the experimental conditions used,52 while the
band analyzed corresponds to the molecular weight of the
monomer. Since there is no clear band corresponding to a
multimer of BLG, we repeated the simulation and analysis with
the concentration of the monomer set to an arbitrary small
value of 1 × 10−11 M under the hypothesis that this protein
was not present in large quantities. Doing so produced the
results shown in the second section of Table 2, which can be
seen to be in much better agreement with the experimental
data.

As a further validation of the entire package, we have
performed a calculation of the corona predicted for silica NPs
immersed in human blood to compare to experimental results
found previously.53 Proteins were selected from the list for
blood provided in the Human Protein Atlas,54,55 which reports
average values for the proteins present in human blood plasma
as detected via mass spectroscopy. This resource notes that
certain proteins which would otherwise be present at a very
high concentration, e.g., human serum albumin, are depleted in
this list. Moreover, since these are average values they do not
necessarily match the particular concentration range used in
the experiment, and so we do not expect perfect agreement.
From this list, we selected proteins with a concentration
greater than 1 mg/L producing a set of c.a. 280 proteins. The
results were matched to UniProtIDs using the online mapping
service provided by UniProt,56 selecting the IDs corresponding
to reviewed genes and limiting the search to Homo sapiens. Of
these, structures for the majority were successfully automati-
cally retrieved from the AlphaFold Database.26 Two of the
remaining proteins, P22352 and P49908 were found to contain
selenocysteine and so were not predicted by AlphaFold; these
were substituted by A0A087X1J7 and A0A182DWH8
respectively due to their high sequence similarity. Six of the
remaining proteins did not have full structures but only
overlapping fragments provided. For these, the structures for
the fragments were fetched and compiled together to produce
a single structure for each entire protein using Modeler.57

Finally, the genes HBA1 and HBA2 both match to the same
structure P69905. We treat these as separate adsorbates during
the KMC simulation and average over the values together
during postprocessing. Corona simulations for this set of
proteins were run for amorphous silica NPs of radius 5, 37, and
501 nm, with the last chosen to test the limit of a planar NP.
For all of these a zeta-potential of −10 mV was set, noting that
noting that the bulk of the surface charge is already accounted
for in the tabulated potentials used. We additionally performed
calculations for an Al (110) NP with R = 5 nm and surface
potential −10 mV to allow for a comparison of the effects of
the material. The steady-state corona content was predicted
using CoronaKMC operating in standard mode with rate
constants rescaled to find the steady state, using spherical
models for all but the planar NP, for which we simulate an area
of size 80 nm × 80 nm.

Table 2. Relative Abundance of Proteins in the Corona Formed by Silica NPs in an Artificial Mixture of Four Proteins, β-Lacto
Globulin (BLG), Lysozyme, Ovalbumin (Ova) and Serotransferrin (sero) as Found by Experiment and Predicted via
NPCoronaPredicta

protein uniprot ID concentration [mg/L] mum/total (exp) num/total (KMC)

BLG P02754 100.0 0.47 ± 0.12 0.25 ± 0.02
Lysozyme P00698 100.0 0.32 ± 0.07 0.40 ± 0.03
Ova PP01012 100.0 0.19 ± 0.05 0.25 ± 0.02
Sero P027878 100.0 0.024 ± 0.006 0.10 ± 0.02
BLG P02754 2 × 10−5 (1.8 ± 0.08) × 10−6 0.005 ± 0.004
Lysozyme P00698 100.0 0.6 ± 0.04 0.52 ± 0.03
Ova PP01012 100.0 0.35 ± 0.04 0.34 ± 0.03
Sero P027878 100.0 0.046 ± 0.004 0.13 ± 0.02

aExperimental data was published previously13 and here has been postprocessed to express the results in terms of relative abundances, that is, the
number of that species adsorbed per NP normalized by the total number adsorbed per NP with errors showing one standard deviation. The errors
shown on experimental data are one standard deviation propagated from the uncertainty on the relative band intensities. Errors on KMC data are
propagated from approximate standard deviations of Ni resulting from fluctuations in counts. The lower section indicates a second simulation and
analysis performed with the concentration of BLG set to an extremely low value to reflect the near-absence of this protein in the experimental
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) blot.
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The results are postprocessed to find the most abundant
species in terms of mass per unit area of the NP and the 20
most abundant for the large silica sphere are shown in Table 3.
Extended results for all NPs are provided in the Supporting
Information. To allow for a quick comparison between the
different simulations and what would be observed exper-
imentally, we plot the obtained proteins in the style of an SDS-
PAGE blot in Figure 9. It can be immediately seen that
increasing the size of the NP favors the adsorption of lighter
proteins, which we attribute to the fact that large proteins can

pack more efficiently around smaller spheres compared to large
spheres or planes and so are more strongly favored for these.
The aluminum NP exhibits a different selection of proteins to
the silica NP of the same radius, notably including a higher
proportion of small proteins, which we attribute to the fact the
binding is essentially irreversible for all proteins and so largely
reflects the kinetics of adsorption.
A direct comparison of the simulated results to experimental

is challenging, given the high dependency of corona measure-
ments on the exact experimental configuration.58 Thus, we
perform mainly a qualitative assessment here in comparison to
the results seen for silica NPs in blood53 for which the R = 5
nm silica particle is a model for the d = 9.6 silica particle of that
work, and the R = 38 nm is a model for d = 76 nm. The results
of that work exhibit the same trend with respect to size as
observed for the two spherical NPs simulated here, namely,
more mass-specific bands for the smaller NP versus a more
uniform distribution of bands for the larger NP. For both cases,
our results predict a band of increased intensity in the corona
compared to blood plasma around 70 kDa which is also
observed for both sizes of NP experimentally.

■ APPLICATIONS
Our multiscale model of biomolecular corona formation on
solid NPs and surfaces can be generalized to a large variety of
systems. It essentially relies only on the existence of an
atomistic force field for the target NP material which is
compatible with standard force fields for biomolecules, e.g.,
CHARMM or GAFF. This suggests a further integration with
existing methodologies for the prediction of force field
parameters via ML techniques is likely to be highly useful in
extending the range of materials even further.59,60

The model can be used for the prediction of fouling of
surfaces in food processing and packaging, screening materials
for nanomedicine, toxicology, environmental safety, material
design and medical devices. Beyond that, our model benefits

Table 3. 20 Most Abundant (by Mass) Proteins Predicted in the Corona of a Silica NP of Radius 38 nm Immersed in Blood
Plasma, with the Mass Normalized by the Surface Area of the NPa

gene name UniProt ID description conc. [mg/L] num./NP mass/area [Da/nm2]

IGFALS P35858 IGF-ALS 26.0 4.1 15.7
APOB P04114 Apo B-100 100.0 0.4 12.0
HSPG2 P98160 HSPG 1.4 0.4 10.9
TNXB P22105 Tenascin-X 1.5 0.4 10.7
LRG1 P02750 α-2-glycoprotein 42.0 4.2 9.3
LUM P51884 Lumican 29.0 4.0 8.9
FN1 P02751 Fibronectin 47.0 0.5 7.9
CA1 P00915 Carbonic anhydrase 1 4.6 4.6 7.7
HBA2 P69905 α-globin 14.0 7.9 7.0
HBA1 P69905 α-globin 14.0 7.9 7.0
HBB P68871 Hemoglobin subunit β 10.0 6.7 6.2
CPB2 Q96IY4 Carboxypeptidase B2 8.5 2.1 5.9
ORM2 P19652 glycoprotein 2 41.0 4.2 5.8
GAPDH P04406 GAP dehydrogenase 1.4 2.6 5.4
C1RL Q9NZP8 Complement C1r 15.0 1.7 5.3
PRSS1 P07477 Serine protease 1 100.0 3.3 5.1
CP P00450 Ceruloplasmin 440.0 0.7 5.0
CPN2 P22792 Carboxypeptidase N-2 25.0 1.4 4.9
HBD P02042 Hemoglobin subunit delta 6.6 5.1 4.8
SERPINF1 P36955 Pigment factor 44.0 1.8 4.8

aGene names, the matching UniProt ID and a short description are provided for cross-referencing, as is the concentration of the species in the
medium.

Figure 9. Results from the simulation of the corona formed for NPs in
human blood plasma, presented in the style of an SDS-PAGE blot for
comparison to experiment. The intensity of each band corresponds to
the total mass of protein in that band, normalized within the channel
while the location of the band is given by log10(MW) as an
approximation of where it would appear in a gel experiment.
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from the advancements in computational tools such as
PMFPredictor18 which makes it possible to predict potentials
for arbitrary small molecules of interest such as tannic or
humic acid and small metabolites for environmental safety
studies or food science. Combined with the fragment-based
methodology used in UA, this enables a wide range of
biomolecules to be scanned across a variety of NP surfaces.
Our current model treats biomolecules as rigid structures.

Incorporating mechanisms to account for protein flexibility,
such as generating an ensemble of protein structures rather
than using a single structure, can improve the accuracy of the
CG models and capture the interactions in diverse environ-
ments. Moreover, since one of the outcomes of the modeling is
the set of preferred biomolecule orientations on the adsorbent
surface, this suggests using these output orientations as starting
configurations for more detailed all-atom studies of the corona
or individual adsorbed proteins, which can, in turn, be used as
improved structures for the inputs to NPCoronaPredict, and
this procedure iterated to allow for realistic configurations with
a highly optimized runtime.
The NPCoronaPredict pipeline allows for the calculation of

numerical descriptors representing the properties of a range of
NPs immersed in a biological fluid, but the adsorption energies
of the biomolecular fragments and larger proteins are also
potentially vital descriptors in categorizing complex structures
in a simple numerical form suitable for ML methodologies, e.g.,
the prediction of further interactions, functionality or safe-by-
design development.61−66 For these models, it has been
demonstrated that simple descriptors obtained from the
corona composition can correlate strongly to measures such
as NP cell uptake. Here, again, we stress the importance of
both the speed and flexibility of our approach to handle
essentially arbitrary NP structures. This is vital to be able to
provide meaningful descriptors to capture potentially subtle
differences in NP structure which may yet lead to significant
differences in bioactivity. The scheme we have developed can
model crystalline and amorphous, organic and inorganic,
modified and pristine NPs on an equal footing, avoiding the
risk of requiring extensive categorical or ad-hoc descriptors to
account for differences between materials. This is indispen-
sable for fields in which only limited experimental data is
available to produce these ML models to limit the potential
risk of needing to discard data for materials if these do not fit
into an established framework or scan the potential candidate
materials even before they are produced.

■ CONCLUSIONS
We have demonstrated an end-to-end pipeline for the
prediction of the corona of adsorbates formed around an NP
in a medium containing a mixture of biomolecules and other
compounds. Our methodology is sufficiently flexible to allow
for corona prediction for a multicomponent NP immersed in
media consisting of a large number of varieties of proteins and
other adsorbates at a fraction of the computational time which
would be required for traditional molecular dynamics
simulations. All the code is available open-source for download
from ref 22 together with a library of required input which
covers a wide range of nanomaterials and biomolecules of
interest, and further NP materials or adsorbates can be
straightforwardly added by the user as required.

■ ASSOCIATED CONTENT
Data Availability Statement
The NPCoronaPredict package is freely available for download
at https://github.com/ucd-softmatterlab. The PMFPredictor
software used to produce PMFs and Hamaker constants is
available from https://github.com/ijrouse/PMFPredictor-
Toolkit. Both packages are provided open source.
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